Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 586
Filtrar
1.
Cell Commun Signal ; 22(1): 212, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566100

RESUMO

The pathogenesis of Parkinson's disease (PD) is strongly associated with neuroinflammation, and type I interferons (IFN-I) play a crucial role in regulating immune and inflammatory responses. However, the specific features of IFN in different cell types and the underlying mechanisms of PD have yet to be fully described. In this study, we analyzed the GSE157783 dataset, which includes 39,024 single-cell RNA sequencing results for five PD patients and six healthy controls from the Gene Expression Omnibus database. After cell type annotation, we intersected differentially expressed genes in each cell subcluster with genes collected in The Interferome database to generate an IFN-I-stimulated gene set (ISGs). Based on this gene set, we used the R package AUCell to score each cell, representing the IFN-I activity. Additionally, we performed monocle trajectory analysis, and single-cell regulatory network inference and clustering (SCENIC) to uncover the underlying mechanisms. In silico gene perturbation and subsequent experiments confirm NFATc2 regulation of type I interferon response and neuroinflammation. Our analysis revealed that microglia, endothelial cells, and pericytes exhibited the highest activity of IFN-I. Furthermore, single-cell trajectory detection demonstrated that microglia in the midbrain of PD patients were in a pro-inflammatory activation state, which was validated in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model as well. We identified transcription factors NFATc2, which was significantly up-regulated and involved in the expression of ISGs and activation of microglia in PD. In the 1-Methyl-4-phenylpyridinium (MPP+)-induced BV2 cell model, the suppression of NFATc2 resulted in a reduction in IFN-ß levels, impeding the phosphorylation of STAT1, and attenuating the activation of the NF-κB pathway. Furthermore, the downregulation of NFATc2 mitigated the detrimental effects on SH-SY5Y cells co-cultured in conditioned medium. Our study highlights the critical role of microglia in type I interferon responses in PD. Additionally, we identified transcription factors NFATc2 as key regulators of aberrant type I interferon responses and microglial pro-inflammatory activation in PD. These findings provide new insights into the pathogenesis of PD and may have implications for the development of novel therapeutic strategies.


Assuntos
Interferon Tipo I , Neuroblastoma , Doença de Parkinson , Camundongos , Animais , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doenças Neuroinflamatórias , Células Endoteliais/metabolismo , NF-kappa B/metabolismo , Análise de Célula Única , Camundongos Endogâmicos C57BL
2.
RSC Adv ; 14(16): 11276-11283, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38595709

RESUMO

Due to their small interlayer spacing and a low lithiation potential close to Li+ deposition, current graphite anodes suffer from weak kinetics, and lithium deposition in a fast-charging process, hindering their practical application in high-power lithium-ion batteries (LIBs). In this work, expanded graphite incorporated with Li4Ti5O12 nanoparticles (EG/LTO) was synthesized via moderate oxidization of artificial graphite following a solution coating process. The EG/LTO has sufficient porosity for fast Li+ diffusion and a dense Li4Ti5O12 layer for decreased interface reaction resistance, resulting in excellent fast-charging properties. EG/LTO presented a high reversible capacity of 272.8 mA h g-1 at 3.74 A g-1 (10C), much higher than that of the original commercial graphite (50.1 mA h g-1 at 10C) and even superior to that of hard carbon. In addition, EG/LTO exhibited capacity retention rate of 98.4% after 500 cycles at 10C, demonstrating high structural stability during a long cycling process. This study provides a protocol for a solution chemistry method to prepare fast-charging graphite anode materials with high stability for high-power LIBs.

3.
Opt Express ; 32(4): 6423-6431, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439345

RESUMO

Intracavity optical metasurfaces with compact and flexible light manipulation capabilities, effectively enrich the implementation of miniaturized and user-friendly orbital angular momentum (OAM) laser sources. Here we demonstrate a wavelength-tunable figure-9 Yb-doped vortex fiber laser solely with standard non-polarization-maintaining single-mode fibers, which utilizes a gap-surface plasmon (GSP) metasurface as the intracavity mode regulation component to generate OAM beams, extending the avenues and related applications for cost-effective OAM laser sources. Gained by the broadband operation range of the metasurface, the figure-9 fiber laser could emit OAM light with center wavelength tunable from 1020 nm to 1060 nm and of high mode purity (about 90%). OAM beams with different topological charges such as l = ±1 have been obtained by changing the metasurface design. The proposed fiber laser with the intracavity GSP metasurface provides a reliable and customized output of OAM beams at the laser source, holding great promise for a wide range of applications in optical communications, sensing, and super-resolution imaging.

4.
J Hazard Mater ; 469: 134020, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38521037

RESUMO

Dinotefuran is a chiral neonicotinoid that is widely distributed in environmental matrices, but its health risks to different organisms are poorly understood. This study investigated the neurotoxic responses of honeybee/cotton aphid nicotinic acetylcholine receptors (nAChRs) to chiral dinotefuran at the enantiomeric scale and demonstrated the microscopic mechanism of species selectivity in nAChR-mediated enantioselective neurotoxicity. The findings indicated that (S)-dinotefuran had a higher affinity for honeybee nAChR than (R)-dinotefuran whereas both enantiomers exhibited similar bioactivity toward cotton aphid nAChR. The results of dynamic neurotoxic processes indicated the association of conformational changes induced by chiral dinotefuran with its macroscopic neurotoxicity, and (R)-dinotefuran, which exhibit low toxicity to honeybee, was found to induce significant conformational changes in the enantioselective neurotoxic reaction, as supported by the average root-mean-square fluctuation (0.35 nm). Energy decomposition results indicated that electrostatic contribution (ΔGele) is the critical energy term that leads to substantial enantioselectivity, and both Trp-51 (-2.57 kcal mol-1) and Arg-75 (-4.86 kcal mol-1), which form a hydrogen-bond network, are crucial residues in mediating the species selectivity for enantioselective neurotoxic responses. Clearly, this study provides experimental evidence for a comprehensive assessment of the health hazards of chiral dinotefuran.


Assuntos
Síndromes Neurotóxicas , Receptores Nicotínicos , Animais , Abelhas , Estereoisomerismo , Neonicotinoides/toxicidade , Neonicotinoides/química , Guanidinas/toxicidade , Guanidinas/química , Nitrocompostos/toxicidade , Nitrocompostos/química
5.
Front Pediatr ; 12: 1348342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38496369

RESUMO

Introduction: Patients with systemic lupus erythematosus (SLE) are at a higher risk of developing cancer, particularly hematological malignancies such as lymphoma and leukemia. However, existing studies on this topic that assess cancer incidence following SLE diagnosis are limited. In addition, SLE can be diagnosed after cancer, although such cases in children have been rarely reported. Case report: We present the case of a 2.6-year-old boy who presented to our institute with fever and abdominal pain. His physical examination revealed a periumbilical mass, which was pathologically diagnosed as Burkitt's lymphoma. Autologous stem cell transplantation was performed to consolidate the effect of chemotherapy and reduce the risk of cancer relapse. He was diagnosed with SLE 5 years later, following the presentation of a fever with rash, positive autoantibodies, decreased complement, and kidney involvement. At the final follow-up, the patient was still alive and showed no recurrence of Burkitt's lymphoma or disease activity of SLE. Conclusion: Despite the low frequency of SLE in children with lymphoma, cancer and SLE may be induced by a common mechanism involving B-cell cloning and proliferation. Therefore, hematologists and rheumatologists should be aware of the occurrence of these two conditions during patient follow-up.

6.
Exp Neurol ; 376: 114750, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492636

RESUMO

Nerve injury often leads to severe dysfunction because of the lack of axon regeneration in adult mammal. Intriguingly a series of extracellular vesicles (EVs) have the obvious ability to accelerate the nerve repair. However, the detailed molecular mechanisms to describe that EVs switch neuron from a transmitter to a regenerative state have not been elucidated. This study elucidated the microRNA (miRNA) expression profiles of two types of EVs that promote nerve regeneration. The functions of these miRNAs were screened in vitro. Among the 12 overlapping miRNAs, miR-25-3p was selected for further analysis as it markedly promoted axon regeneration both in vivo and in vitro. Furthermore, knockdown experiments confirmed that PTEN and Klf4, which are the major inhibitors of axon regeneration, were the direct targets of miR-25-3p in dorsal root ganglion (DRG) neurons. The utilization of luciferase reporter assays and functional tests provided evidence that miR-25-3p enhances axon regeneration by targeting Tgif1. Additionally, miR-25-3p upregulated the phosphorylation of Erk. Furthermore, Rapamycin modulated the expression of miR-25-3p in DRG neurons. Finally, the pro-axon regeneration effects of EVs were confirmed by overexpressing miR-25-3p and Tgif1 knockdown in the optic nerve crush model. Thus, the enrichment of miR-25-3p in EVs suggests that it regulates axon regeneration, proving a potential cell-free treatment strategy for nerve injury.

7.
Sci Adv ; 10(5): eadl4661, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306421

RESUMO

Exceptional points (EPs), unique junctures in non-Hermitian open systems where eigenvalues and eigenstates simultaneously coalesce, have gained notable attention in photonics because of their enthralling physical principles and unique properties. Nonetheless, the experimental observation of EPs, particularly within the optical domain, has proven rather challenging because of the grueling demand for precise and comprehensive control over the parameter space, further compounded by the necessity for dynamic tunability. Here, we demonstrate the occurrence of optical EPs when operating with an electrically tunable non-Hermitian metasurface platform that synergizes chiral metasurfaces with piezoelectric MEMS mirrors. Moreover, we show that, with a carefully constructed metasurface, a voltage-controlled spectral space can be finely tuned to access not only the chiral EP but also the diabolic point characterized by degenerate eigenvalues and orthogonal eigenstates, thereby allowing for dynamic topological phase transition. Our work paves the way for developing cutting-edge optical devices rooted in EP physics and opening uncharted vistas in dynamic topological photonics.

8.
Regen Biomater ; 11: rbae005, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414797

RESUMO

For repairing peripheral nerve and spinal cord defects, biomaterial scaffold-based cell-therapy was emerged as an effective strategy, requiring the positive response of seed cells to biomaterial substrate and environment signals. Previous work highlighted that the imposed surface properties of scaffold could provide important guidance cues to adhered cells for polarization. However, the insufficiency of native Schwann cells and unclear cellular response mechanisms remained to be addressed. Given that, this study aimed to illuminate the micropatterned chitosan-film action on the rat skin precursor-derived Schwann cells (SKP-SCs). Chitosan-film with different ridge/groove size was fabricated and applied for the SKP-SCs induction. Results indicated that SKP-SCs cultured on 30 µm size microgroove surface showed better oriented alignment phenotype. Induced SKP-SCs presented similar genic phenotype as repair Schwann cells, increasing expression of c-Jun, neural cell adhesion molecule, and neurotrophic receptor p75. Moreover, SKP-SC-secretome was subjected to cytokine array GS67 assay, data indicated the regulation of paracrine phenotype, a panel of cytokines was verified up-regulated at secreted level and gene expression level in induced SKP-SCs. These up-regulated cytokines exhibit a series of promotive neural regeneration functions, including cell survival, cell migration, cell proliferation, angiogenesis, axon growth, and cellular organization etc. through bioinformatics analysis. Furthermore, the effectively polarized SKP-SCs-sourced secretome, promoted the proliferation and migration capacity of the primarily cultured native rat Schwann cells, and augmented neurites growth of the cultured motoneurons, as well as boosted axonal regrowth of the axotomy-injured motoneurons. Taken together, SKP-SCs obtained pro-neuroregeneration phenotype in adaptive response to the anisotropic topography surface of chitosan-film, displayed the oriented parallel growth, the transition towards repair Schwann cell genic phenotype, and the enhanced paracrine effect on neural regeneration. This study provided novel insights into the potency of anisotropic microtopography surface to Schwann-like cells phenotype regulation, that facilitating to provide promising engineered cell-scaffold in neural injury therapies.

9.
J Agric Food Chem ; 72(8): 4358-4366, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38349745

RESUMO

The hydrolytic products of chitosanase from Streptomyces avermitilis (SaCsn46A) were found to be aminoglucose and chitobiose, whereas those of chitosanase from Bacillus subtilis (BsCsn46A) were chitobiose and chitotriose. Therefore, the sequence alignment between SaCsn46A and BsCsn46A was conducted, revealing that the structure of BsCsn46A possesses an extra loop region (194N-200T) at the substrate binding pocket. To clarify the impact of this loop on hydrolytic properties, three mutants, SC, TJN, and TJA, were constructed. Eventually, the experimental results indicated that SC changed the ratio of chitobiose to chitotriose hydrolyzed by chitosanase from 1:1 into 2:3, while TJA resulted in a ratio of 15:7. This experiment combined molecular research to unveil a crucial loop within the substrate binding pocket of chitosanase. It also provides an effective strategy for mutagenesis and a foundation for altering hydrolysate composition and further applications in engineering chitosanase.


Assuntos
Bacillus subtilis , Quitosana , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Polimerização , Glicosídeo Hidrolases/química , Alinhamento de Sequência
10.
Small ; : e2311880, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366127

RESUMO

Iodide perovskites have demonstrated their unprecedented high efficiency and commercialization potential, and their superior optoelectronic properties, such as high absorption coefficient, high carrier mobility, and narrow direct bandgap, have attracted much attention, especially in solar cells, photodetectors, and light-emitting diodes (LEDs). However, whether it is organic iodide perovskite, organic-inorganic hybrid iodide perovskite or all-inorganic iodide perovskite the stability of these iodide perovskites is still poor and the contamination is high. In recent years, scholars have studied more iodide perovskites to improve their stability as well as optoelectronic properties from various angles. This paper systematically reviews the strategies (component engineering, additive engineering, dimensionality reduction engineering, and phase mixing engineering) used to improve the stability of iodide perovskites and their applications in recent years.

11.
BMJ Open ; 14(1): e074557, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238054

RESUMO

OBJECTIVES: This study aimed to pool the efficacy in bowel movement and explore the change of gut microbiota on adult functional constipated patients after probiotics-containing products treatment. DESIGN: Systematic review and meta-analysis. DATA SOURCES: PubMed, Cochrane Library for published studies and ClinicalTrials.gov for 'grey' researches were independently investigated for randomised controlled trials up to November 2022. ELIGIBILITY CRITERIA, DATA EXTRACTION AND SYNTHESIS: The intervention was probiotics-containing product, either probiotics or synbiotics, while the control was placebo. The risk of bias was conducted. The efficacy in bowel movement was indicated by stool frequency, stool consistency and Patient Assessment of Constipation Symptom (PAC-SYM), while the change of gut microbiota was reviewed through α diversity, ß diversity, change/difference in relative abundance and so on. The subgroup analysis, sensitivity analysis and random-effect meta-regression were conducted to explore the heterogeneity. The Grading of Recommendations Assessment Development and Evaluation was conducted to grade the quality of evidence. RESULTS: 17 studies, comprising 1256 participants, were included with perfect agreements between two researchers (kappa statistic=0.797). Compared with placebo, probiotics-containing products significantly increased the stool frequency (weighted mean difference, WMD 0.93, 95% CI 0.47 to 1.40, p=0.000, I²=84.5%, 'low'), improved the stool consistency (WMD 0.38, 95% CI 0.05 to 0.70, p=0.023, I²=81.6%, 'very low') and reduced the PAC-SYM (WMD -0.28, 95% CI: -0.45 to -0.11, p=0.001, I²=55.7%, 'very low'). In subgroup analysis, synbiotics was superior to probiotics to increase stool frequency. Probiotics-containing products might not affect α or ß diversity, but would increase the relative abundance of specific strain. CONCLUSIONS: Probiotics-containing products, significantly increased stool frequency, improved stool consistency, and alleviated functional constipation symptoms. They increased the relative abundance of specific strain. More high-quality head-to-head randomised controlled trials are needed.


Assuntos
Constipação Intestinal , Microbioma Gastrointestinal , Probióticos , Adulto , Humanos , Constipação Intestinal/terapia , Defecação , Probióticos/uso terapêutico , Simbióticos
12.
Light Sci Appl ; 13(1): 21, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233421

RESUMO

Ultrathin multifunctional metalenses are demonstrated to control the multiple degrees of freedom of a single-photon source in hexagonal boron nitride.

13.
Micromachines (Basel) ; 15(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38258226

RESUMO

SiCp/Al composite materials are widely used in various industries such as the aerospace and the electronics industries, primarily due to their excellent material properties. However, their machinability is significantly weakened due to their unique characteristics. Consequently, efficient and precise machining technology for SiCp/Al composite materials has become a crucial research area. By conducting a comprehensive analysis of the relevant research literature from both domestic and international sources, this study examines the processing mechanism, as well as the turning, milling, drilling, grinding, special machining, and hybrid machining characteristics, of SiCp/Al composite materials. Moreover, it summarizes the latest research progress in composite material processing while identifying the existing problems and shortcomings in this area. The aim of this review is to enhance the machinability of SiCp/Al composite materials and promote high-quality and efficient processing methods.

14.
Adv Mater ; 36(11): e2310199, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38096904

RESUMO

The expression of disease-specific membrane proteins (MPs) is a crucial indicator for evaluating the onset and progression of diseases. Urinalysis of in situ MPs has the potential for point-of-care disease diagnostics, yet remains challenging due to the lack of molecular reporter to transform the expression information of in situ MPs into the measurable urine composition. Herein, a series of tetrahedral DNA frameworks (TDFs) are employed as the cores of programmable atom-like nanoparticles (PANs) to direct the self-assembly of PAN reporters with defined ligand valence and spatial distribution. With the rational spatial organization of ligands, the interaction between PAN reporters and MPs exhibits superior stability on cell-membrane interface under renal tubule-mimic fluid microenvironment, thus enabling high-fidelity conversion of MPs expression level into binding events and reverse assessment of in situ MP levels via measurement of the renal clearance efficiency of PAN reporters. Such PAN reporter-mediated signal transformation mechanism empowers urinalysis of the onset of acute kidney injury at least 6 h earlier than the existing methods with an area under the curve of 100%. This strategy has the potential for urinalysis of a variety of in situ membrane proteins.


Assuntos
Proteínas de Membrana , Nanopartículas , Nanopartículas/química , Urinálise , DNA/química , Membrana Celular , Ligantes
15.
J Plant Physiol ; 292: 154160, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147808

RESUMO

The response regulator (RR) gene family play crucial roles in cytokinin signal transduction, plant development, and resistance to abiotic stress. However, there are no reports on the identification and functional characterization of RR genes in melon. In this study, a total of 18 CmRRs were identified and classified into type A, type B, and clock PRRs, based on phylogenetic analysis. Most of the CmRRs displayed tissue-specific expression patterns, and some were induced by cold stress according to two RNA-seq datasets. The expression patterns of CmRR2/6/11/15 and CmPRR2/3 under cold treatment were confirmed by qRT-PCR. Subcellular localization assays indicated that CmRR6 and CmPRR3 were primarily localized in the nucleus and chloroplast. Furthermore, when either CmRR6 or CmPRR3 were silenced using tobacco ringspot virus (TRSV), the cold tolerance of the virus-induced gene silencing (VIGS) melon plants were significantly enhanced, as evidenced by measurements of chlorophyll fluorescence, ion leakage, reactive oxygen, proline, and malondialdehyde levels. Additionally, the expression levels of CmCBF1, CmCBF2, and CmCBF3 were significantly increased in CmRR6-silenced and CmPRR3-silenced plants under cold treatment. Our findings suggest that CmRRs contribute to cold stress responses and provide new insights for further pursuing the molecular mechanisms underlying CmRRs-mediated cold tolerance in melon.


Assuntos
Resposta ao Choque Frio , Cucumis melo , Resposta ao Choque Frio/genética , Cucumis melo/genética , Cucumis melo/metabolismo , Filogenia , Genoma de Planta , Genes Reguladores , Regulação da Expressão Gênica de Plantas
16.
Bioact Mater ; 33: 572-590, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38111651

RESUMO

A central question in neural tissue engineering is how the tissue-engineered nerve (TEN) translates detailed transcriptional signals associated with peripheral nerve regeneration into meaningful biological processes. Here, we report a skin-derived precursor-induced Schwann cell (SKP-SC)-mediated chitosan/silk fibroin-fabricated tissue-engineered nerve graft (SKP-SCs-TEN) that can promote sciatic nerve regeneration and functional restoration nearly to the levels achieved by autologous nerve grafts according to behavioral, histological, and electrophysiological evidence. For achieving better effect of neuroregeneration, this is the first time to jointly apply a dynamic perfusion bioreactor and the ascorbic acid to stimulate the SKP-SCs secretion of extracellular matrix (ECM). To overcome the limitation of traditional tissue-engineered nerve grafts, jointly utilizing SKP-SCs and their ECM components were motivated by the thought of prolongating the effect of support cells and their bioactive cues that promote peripheral nerve regeneration. To further explore the regulatory model of gene expression and the related molecular mechanisms involved in tissue engineering-aided peripheral nerve regeneration, we performed a cDNA microarray analysis of gene expression profiling, a comprehensive bioinformatics analysis and a validation study on the grafted segments and dorsal root ganglia tissues. A wealth of transcriptomic and bioinformatics data has revealed complex molecular networks and orchestrated functional regulation that may be responsible for the effects of SKP-SCs-TEN on promoting peripheral nerve regeneration. Our work provides new insights into transcriptomic features and patterns of molecular regulation in nerve functional recovery aided by SKP-SCs-TEN that sheds light on the broader possibilities for novel repair strategies of peripheral nerve injury.

17.
Adv Healthc Mater ; : e2303762, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38047767

RESUMO

Surgical residual tumor lesions (R1 resection of surgical procedures (e.g., liver cancer infiltrating the diaphragm, surgical residual breast cancer, postoperative residual ovarian cancer) or boundary residual after ablation) and lymph node metastasis that cannot be surgically resected (retroperitoneal lymph nodes) significantly affect postoperative survival of tumor patients. This clinical conundrum poses three challenges for local drug delivery systems: stable and continuous delivery, good biocompatibility, and the ability to package new targeted drugs that can synergize with other treatments. Here, a drug-laden hydrogel generated from pure DNA strands and highly programmable in adjusting its mesh size is reported. Meanwhile, the DNA hydrogel can assist the microcrystallization of novel radiosensitizing drugs, ataxia telangiectasia and rad3-related protein (ATR) inhibitor (Elimusertib), further facilitating its long-term release. When applied to the tumor site, the hydrogel system demonstrates significant antitumor activity, minimized systemic toxicity, and has a modulatory effect on the tumor-immune cell interface. This drug-loaded DNA-hydrogel platform represents a novel modality for adjuvant therapy in patients with surgical residual tumor lesions and lymph node metastasis.

18.
Hortic Res ; 10(11): uhad213, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38046851

RESUMO

Pepper (Capsicum annuum L.) is frequently challenged by various pathogens, among which Phytophthora capsici is the most devastating to pepper production. Red light signal acts as a positive induction of plant resistance against multiple pathogens. However, little is known about how the red light signal affects pepper resistance to P. capsici infection (PCI). Here, we report that red light regulates salicylic acid (SA) accumulation by activating elongated hypocotyl5 (CaHY5), a basic leucine zipper (bZIP) transcription factor, thereby decreasing pepper susceptibility to PCI. Exogenous SA treatment reduced pepper susceptibility to PCI, while silencing of CaPHYB (a red light photoreceptor) increased its susceptibility. PCI significantly induced CaHY5 expression, and silencing of CaHY5 reduced SA accumulation, accompanied by decreases in the expression levels of phenylalanine ammonia-lyase 3 (CaPAL3), CaPAL7, pathogenesis-related 1 (CaPR1), and CaPR1L, which finally resulted in higher susceptibility of pepper to PCI. Moreover, CaHY5 was found to activate the expression of CaPAL3 and CaPAL7, which are essential for SA biosynthesis, by directly binding to their promoters. Further analysis revealed that exogenous SA treatment could restore the resistance of CaHY5-silenced pepper plants to PCI. Collectively, this study reveals a critical mechanism through which red light induces SA accumulation by regulating CaHY5-mediated CaPAL3 and CaPAL7 expression, leading to enhanced resistance to PCI. Moreover, red light-induced CaHY5 regulates pepper resistance to PCI, which may have implications for PCI control in protected vegetable production.

19.
Reprod Sci ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087182

RESUMO

It is recognized that PCOS patients are often accompanied with aberrant follicular development, which is an important factor leading to infertility in patients. However, the relevant regulatory mechanisms of abnormal follicular development are not well understood. In the present study, by collecting human ovarian granulosa cells (GCs) from PCOS patients who underwent in vitro fertilization (IVF), we found that the proliferation ability of GCs in PCOS patients was significantly reduced. Surprisingly, PATL2 and adrenomedullin 2 (ADM2) were obviously decreased in the GCs of PCOS patients. To further explore the potential roles of PATL2 and ADM2 on GC, we transfected PATL2 siRNA into KGN cells to knock down the expression of PATL2. The results showed that the growth of GCs remarkably repressed after knocking down the PATL2, and ADM2 expression was also weakened. Subsequently, to study the relationship between PATL2 and ADM2, we constructed PATL2 mutant plasmid lacking the PAT construct and transfected it into KGN cells. The cells showed the normal PATL2 expression, but attenuated ADM2 expression and impaired proliferative ability of GCs. Finally, the rat PCOS model experiments further confirmed our findings in KGN cells. In conclusion, our study suggests that PATL2 promoted the proliferation of ovarian GCs by stabilizing the expression of ADM2 through "PAT" structure, which is beneficial to follicular development, whereas, in the ovary with polycystic lesions, reduction of PATL2 could result in the decreased expression of ADM2, subsequently weakened the proliferation ability of GCs and finally led to the occurrence of aberrant follicles.

20.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081290

RESUMO

Vortex dynamics has attracted tremendous attention for both fundamental physics and applications of type-II superconductors. However, methods to detect local vortex motion or vortex jump with high sensitivity are still scarce. Here, we fabricated soft point contacts on the clean layered superconductor 2H-NbSe2, which are demonstrated to contain multiple parallel micro-constrictions by scanning electronic microscopy. Andreev reflection spectroscopy was then studied in detail for the contacts. Differential conductance taken at fixed bias voltages was discovered to vary spontaneously over time in various magnetic fields perpendicular to the sample surface. The conductance variations become invisible when the field is zero or large enough, or parallel to the sample surface, which can be identified as the immediate consequence of vortex motion across a finite number of micro-constrictions. These results demonstrate point contact Andreev reflection spectroscopy to be a new potential way with a high time resolution to study the vortex dynamics in type-II superconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...